
1. Introduction
Dissipation in the bottom boundary layer caused by bottom friction is responsible for the dissipation of 
over 70% of the global surface tidal energy (Munk & Wunsch, 1998) and has a significant effect on the en-
ergy balance of the marine dynamical system (Munk, 1997). Taylor (1920) introduced the quadratic bottom 
friction formulation as a function of the bottom friction coefficient (BFC) and velocity and estimated the 
bulk value for BFCs. The value of BFC is critical for accurate simulations of tides, storm surges, circulation, 
and sediment transport (Fan et al., 2019; Sana & Tanaka, 1997), which are key research fields of physical 
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conditions and sediment transport rates, which are important for scientific research and coastal ocean 
engineering. The BFC varies spatially and temporally, as indicated by in situ observations, but it is 
difficult to accurately set this parameter in tidal models. In this study, based on a two-dimensional multi-
constituent tidal model and its adjoint model, the harmonic constants of four principal tidal constituents 
(M2, S2, K1, and O1) obtained from TOPEX/Poseidon altimeter data were assimilated to estimate spatially 
and temporally varying BFCs using the adjoint method in the Bohai, Yellow, and East China Seas. 
The model performance was significantly improved after data assimilation, which was independently 
tested by harmonic constants at coastal tidal gauge stations. Through several sensitivity experiments, 
the spatial distributions of the temporally averaged BFCs were verified to be robust and not affected by 
model settings, while the temporal variations of the spatially averaged BFCs were also robust but related 
to the tidal constituents. The variations in the estimated BFCs with the current speed and water depth 
were nearly consistent with those in the observations. Overall, the temporal and spatial variations in the 
estimated BFCs are significantly correlated with the current speed and water depth, which is attributed 
to the erosion-deposition of sediment on the seabed and the changes in seabed roughness under different 
current speeds. The results can be beneficial for determining reasonable parameters for the bottom stress 
and setting the BFC in multi-constituent tidal models.

Plain Language Summary Tides are a common phenomenon in the ocean and have a 
major impact on the design of coastal engineering projects and marine resource development. Numerical 
simulation is a valuable method for predicting tides, and the bottom friction coefficient (BFC) is the 
main model parameter of the tidal model. Generally, BFCs are spatially and temporally varying, causing 
difficulties in setting these parameters accurately in a tidal model. In this study, the spatially and 
temporally varying BFCs were estimated by assimilating satellite altimeter observations with the adjoint 
method to simulate the tides in the Bohai, Yellow, and East China Seas. The spatial distributions of the 
estimated BFCs do not change with the changing model settings, while the temporal variations of the 
estimated BFCs are affected by the number of simulated tidal constituents. The variations in the estimated 
BFCs are correlated with the current speed and water depth, and the possible reasons are analyzed. This 
study can be beneficial for determining reasonable parameters for the bottom stress and setting BFC in 
multi-constituent tidal models.
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oceanography and provide essential information for the design and planning of coastal ocean engineering 
(Chen et al., 2007; Lee & Jeng, 2002). However, the inherent uncertainty in setting the values of BFC se-
verely affects relevant studies and applications (Ludwick, 1975). Therefore, it is vital to reliably estimate the 
BFCs (Arora & Bhaskaran, 2012).

The BFC can be estimated by analyzing in situ observational data using the dynamical balance method, 
turbulence parameter method, and log-layer fit method (Xu et al., 2017). Several studies have been carried 
out to estimate BFCs by analyzing in situ observational data in various parts of the oceans worldwide. Lud-
wick (1975) estimated the BFC in the tidal entrance to the Chesapeake Bay and found that the BFC changed 
continuously with a moveable bed, a size hierarchy of mobile bed forms, and time-varying flow. Green and 
McCave (1995) determined that the BFC in the eastern Irish Sea was highly variable, which was coherent-
ly explained by boundary-layer stratification. The BFCs in South San Francisco Bay estimated by Cheng 
et al. (1999) varied temporally, with a higher value during less energetic neap tides and a lower value during 
more energetic spring tides. Wang et al. (2004) found that the estimated BFCs in the intertidal flat of north-
ern Jiangsu, China were inversely proportional to the reference velocity when the current speed exceeded 
0.3 m/s. Howarth and Souza (2005) indicated that the BFC in the North and Irish Seas varied spatially and 
was dependent on the tidal current. Liu and Wei (2007) demonstrated that the estimated BFC in the Yellow 
Sea had a high-frequency temporal variation and was dependent on the mean velocity magnitude. The BFCs 
in the northwestern East China Sea estimated by Lozovatsky et al.  (2008) exhibited temporal variations. 
The BFCs in the northern Gulf of Mexico, USA estimated by Safak (2016) demonstrated an overall decrease 
with the increasing current speed during periods with and without strong wave energy. Xu et al.  (2017) 
determined that the estimated BFCs in Xiangshan Bay exhibited a significant flood-ebb asymmetry. Fan 
et al. (2019) demonstrated that the estimated BFCs in the East China Shelf Seas varied spatially and tem-
porally from 10−3 to 10−2, with average values of approximately 2.0 × 10−3, which was caused by currents. 
Overall, the above in situ estimated BFCs vary by region in a range of several orders of magnitude (from 10−6 
to 100) with apparent temporal and spatial variations.

Although the value varies temporally and spatially, as indicated by the in situ observations, the BFC is 
assumed to be constant in most previous studies of numerical simulations (Fan et al., 2019), even in some 
three-dimensional models (Kagan et al., 2012). The BFC is typically tuned according to the difference be-
tween the modeled and observed data (Fringer et al.,  2019), but the estimation of the BFC by trial and 
error is tedious and impractical (Khatibi et al., 1997; Siripatana et al., 2018), especially for spatially and 
temporally varying BFCs. In addition, the regression relationships between the BFC and the influencing 
factors, obtained from the in situ observations, cannot be used directly and need to be further tuned before 
applying them to other regions because the regression coefficients are related to the local conditions (Fan 
et al., 2019).

Data assimilation methods can determine the optimal parameter sets that minimize the difference between 
simulations and observations, thus providing a quantitative methodology to estimate the temporally or 
spatially varying model parameters (Fringer et al., 2019). Navon (1998) presented a significant overview of 
parameter estimation in meteorology and oceanography regarding the applications of the four-dimensional 
variational data assimilation method to inverse parameter estimation problems. Zhang et  al.  (2020) re-
viewed the parameter estimation in coupled ocean-atmosphere models using four-dimensional variational 
analysis and an ensemble Kalman filter. The adjoint method is a typical four-dimensional variational data 
assimilation method and has been widely used to estimate BFCs in numerical models. Ullman and Wil-
son (1998) estimated BFCs in the Hudson Estuary by assimilating Acoustic Doppler current profiler data 
from a moving vessel using the adjoint method and found that the BFC exhibited large temporal and spatial 
variability. Heemink et al. (2002) estimated the spatially varying Chezy coefficient in the Chezy formula 
for BFC by assimilating satellite observations and tide gauge data using the adjoint method. The spatially 
varying BFCs were estimated by assimilating M2 harmonic constants from TOPEX/Poseidon (T/P) altim-
eter data using the adjoint method in the Bohai Sea (Guo et al., 2017), the Bohai and Yellow Seas (Zhang 
& Lu, 2010), and the Bohai, Yellow, and East China Seas (BYECS) (Lu & Zhang, 2006). Gao et al. (2015) 
estimated the spatially varying BFCs and internal tide dissipation coefficient by assimilating the harmonic 
constants of four principal tidal constituents (M2, S2, K1, and O1) in the South China Sea using the adjoint 
method. Qian et al. (2021) estimated the spatially varying BFCs in the BYECS using the adjoint method, and 
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anzlyzed the characteristics and possible mechanisms of the estimated BFCs, especially the occurrence of 
large values. Other data assimilation methods, including the singular evolutive interpolated Kalman filter 
(Mayo et al., 2014), Bayesian inference (Sraj et al., 2014), nudging analysis (Demissie & Bacopoulos, 2017) 
and ensemble Kalman filter (Siripatana et al., 2018; Slivinski et al., 2017), have also been used to estimate 
BFCs in numerical models.

The tidal dynamics in the BYECS are quite complex, especially the interaction among different tidal constit-
uents. A conjecture is then raised that the temporal and spatial variations of the BFC would be influenced 
by this interaction. However, the estimated BFCs by analyzing in situ observational data only provide a local 
description of the spatially and temporally varying BFCs. In addition, in most previous works the spatial 
or temporal variations of the BFC are estimated using data assimilation methods when only one main tidal 
constituent (M2) is considered. Therefore, when multiple tidal constituents are synchronously simulated, 
the spatial distributions and temporal variations of the BFCs in the BYECS are not clear at present, which 
motivates this work. In this study, the adjoint method is used to estimate the spatially and temporally var-
ying BFC of a two-dimensional (2D) multi-constituent tidal model in the BYECS by assimilating the tidal 
harmonic constants of four principal tidal constituents M2, S2, K1, and O1. The spatial distributions and 
temporal variations of BFCs are analyzed and the possible mechanisms are discussed. The remainder of this 
paper is organized as follows. In Section 2, the models and observations are described. In Section 3, the four 
principal tidal constituents in the BYECS are synchronously simulated by estimating the spatially and tem-
porally varying BFC using the adjoint method. In addition, the spatial distributions and temporal variations 
of the estimated BFCs are analyzed. The possible mechanisms of the BFC variations in multi-constituent 
tidal models are discussed in Section 4. The conclusions are presented in Section 5.

2. Models and Observations
2.1. 2D Multi-Constituent Tidal Model

Because internal tide dissipation is dispensable for tidal energy budgets in the BYECS (Liu et  al., 2019; 
Niwa & Hibiya,  2004), the 2D depth-averaged multi-constituent tidal model is used. Following Lu and 
Zhang (2006) and Zhang and Wang (2014), the governing equations of the 2D multi-constituent tidal model 
are as follows:
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where t is time; λ and   are east longitude and north latitude, respectively; R is the radius of the earth; 
 cosa R ; h is the undisturbed water depth; ζ is the sea surface elevation above the undisturbed sea level; 

u and v are the velocity components in the east and north, respectively; f is the Coriolis parameter; g is the 
acceleration due to gravity; k is the BFC; A is the horizontal eddy viscosity coefficient; Δ is the Laplace oper-
ator;                     

1 1 1Δ , , cos ,u v a a u v R u v  (Lu & Zhang, 2006; Zhang & Wang, 2014); and   

is the adjusted height of equilibrium tide and is calculated following Fang et al. (1999) and Gao et al. (2015).

At the open boundaries, the time series of sea surface elevation caused by the tidal constituents is given as 
follows:
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where A and G are harmonic constants for the amplitude and phase lag (UTC, the same below), respec-
tively; F is the nodal factor; V is the initial phase angle of the equilibrium tide; U is the nodal angle; ω is 
the angular speed of the tidal constituent; m is the mth tidal constituent; and M is the number of the tidal 
constituents. The time series of sea surface elevation at the open boundaries was obtained from Oregon 
State University Tidal Inversion Software (Egbert & Erofeeva, 2002). The numerical schemes for this 2D 
multi-constituent tidal model are the same as those in Lu and Zhang (2006).

2.2. Adjoint Model

According to the adjoint method, a cost function J is defined to describe the difference between the sim-
ulated and observed sea surface elevations caused by the tidal constituents (Lu & Zhang, 2006; Zhang & 
Wang, 2014):

     
2

Σ2
ˆ1J K d (5)

where ̂  is the observed sea surface elevation calculated using the observed harmonic constants with Equa-
tion 4 and is assimilated into the 2D multi-constituent tidal model using the adjoint method; Σ is the set of 
the observation locations; Kζ is the weighting matrix and theoretically should be the inverse of the observa-
tion error covariance matrix, which can be simplified by assuming that the data errors are uncorrelated and 
equally weighted (Yu & O'Brien, 1992). Similar to Wang, Cao, et al. (2018), the elements in Kζ are 1 where 
observations are available and 0 otherwise.

Based on the Lagrange multiplier method (Thacker & Long, 1988), the Lagrangian function is defined as:
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where  , , and   are the adjoint variables of ζ, u, and v, respectively.

According to the theory of the Lagrange multiplier method (Thacker & Long, 1988), the first-order derivate 
of the Lagrangian function with respect to the variables and parameters should be zero to minimize the cost 
function:
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From Equation 7, the adjoint model of the 2D multi-constituent tidal model, which governs the evolution 
of the adjoint variables  , , and  , can be obtained. The detailed formulae and numerical schemes of the 
adjoint model can be found in Lu and Zhang (2006).

2.3. Estimation of BFC Using the Adjoint Method

From Equation 9, the gradient of the cost function with respect to the BFC is obtained as follows:
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When the gradient is calculated, the spatially and temporally varying 
BFCs are estimated using the steepest descent method (Wang, Zhang, 
et al., 2018; Zhang & Lu, 2010), as follows:

  
  1

max/l l l lp p q q (11)

where γ is the step size; l is the lth iteration step of the parameter esti-
mation; 


p is the vector of the spatially and temporally varying BFCs ar-

ranged in a sequence; 

q is the gradient vector of the cost function with 

respect to 

p; and qmax is the L  norm of 


q. As indicated by Zhang and 

Lu (2010) and Zhang et al. (2019), the steepest descent method is as effi-
cient and useful as the limited-memory conjugate gradient algorithm and 
the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm that 
have been widely used (Alekseev et al., 2009; Zou, Navon, et al., 1993), 
which may be due to the clustering of eigenvalues in the spectrum of 
the problem being minimized (Alekseev et al., 2009). When the BFC is 
assumed to be spatially varying or temporally varying, 


p is the vector of 

the spatially varying BFC or temporally BFC arranged in a sequence, as 
shown in Zhang et al. (2011). When the BFC is assumed to be constant, 


p 

is degenerated to a constant value.

The processes for estimating the spatially and temporally varying BFCs using the adjoint method are shown 
in Figure 1. The details are not shown here for brevity.

2.4. Observations

As indicated by Fang et al. (2004), the accuracy of the T/P solutions in the BYECS achieved levels of 2–4 cm 
in the amplitudes and 5° in the phase lags for the principal constituents (M2, S2, K1, and O1). Therefore, the 
tidal harmonic constants (amplitude and phase lag) of four principal tidal constituents M2, S2, K1, and O1 
(only M2 or M2 and K1 in some of the following sensitivity experiments), retrieved from the T/P altimeter 
data, are assimilated into the 2D multi-constituent tidal model with the adjoint method and labeled as 
“assimilating observations” (AOs). The validity of data assimilation should be tested by independent obser-
vations that are not assimilated but only for verification (Elbern et al., 2007; Wang, Zhang et al., 2018). The 
tidal harmonic constants at the coastal tidal gauge stations are considered as “checking observations” (COs) 
to independently test the validity of the data assimilation more rigorously. The spatial positions of the T/P 
satellite tracks and tidal gauge stations are shown in Figure 2b.

2.5. Model Settings

The model area is the BYECS, as shown in Figure 2, with a horizontal resolution of 10×10′. The time steps 
of both the 2D multi-constituent tidal model and the adjoint model are 80s, which satisfies the Courant–
Friedrichs–Lewy condition. As shown in Fang et al. (2004), M2, S2, K1, and O1 are the principal tidal constit-
uents in the BYECS, so these four principal tidal constituents (only M2 or M2 and K1 in some of the following 
sensitivity experiments) were simulated. Following Gao et al. (2015), the 2D multi-constituent tidal model 
was run for 30 days from 1 January 2010 (16 January 2010, in some of the following sensitivity experiments) 
with the hydrostatic state (i.e., ζ = u = v = 0), and the initial 15 days was spun up, which is sufficient to 
separate the simulated four principal tidal constituents (Cao et al., 2015). The adjoint model was run for 
15 days backward in time from 31 January 2010 (15 February 2010, in some of the subsequent sensitivity 
experiments). Following Lu and Zhang (2006) and Wang et al. (2014), the horizontal eddy viscosity coeffi-
cient was set as a constant with a value of 5000 m2/s, and the default value of the BFC was set to 2.0 × 10−3.
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Figure 1. Flowchart for estimating spatially and temporally varying BFCs 
using the adjoint method.
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The stop criterion of the iteration in Figure 1 is the difference in cost functions, normalized by the value 
at the first step, between the last two steps was less than 5.0 × 10−5, with a maximum value of 100 for the 
iteration steps. The open boundary conditions were fixed. In addition, the estimated BFCs were limited to be 
larger than 1/100 times the default BFC and less than 100 times the default BFC at every iteration.

3. Experiments and Results
3.1. Benchmark Experiment

To test the effectiveness of the adjoint data assimilation, a benchmark experiment with index Exp1 was car-
ried out. In Exp1, the initial guess value of the BFC was set to the default value and assumed to be spatially 
and temporally varying. The starting time in Exp1 was 1 January 2010. Four principal tidal constituents, M2, 
S2, K1, and O1, were synchronously simulated by assimilating the AOs. The other model settings were set 
to the default values, as described in Section 2.5. The detailed model settings in Exp1 are listed in Table 1.
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Figure 2. (a) Location of the BYECS (rectangle with dashed lines); (b) bathymetric map of the BYECS and the 
positions of tidal gauge stations (red circles), T/P satellite tracks (magenta points), and open boundaries (cyan circles).

No. Tidal constituents Starting time Initial BFC
Normalized step 

size Distribution of BFC
Normalized 

tidal amplitudes

Exp1 M2, S2, K1, O1 1 Jan 2010 2.0 × 10−3 1 Spatial-temporal 1

SE1 M2, S2, K1, O1 1 Jan 2010 1.5 × 10−3 1 Spatial-temporal 1

SE2 M2, S2, K1, O1 1 Jan 2010 2.5 × 10−3 1 Spatial-temporal 1

SE3 M2, S2, K1, O1 1 Jan 2010 2.0 × 10−3 0.5 Spatial-temporal 1

SE4 M2, S2, K1, O1 1 Jan 2010 2.0 × 10−3 1.5 Spatial-temporal 1

SE5 M2, K1 1 Jan 2010 2.0 × 10−3 1 Spatial-temporal 1

SE6 M2 1 Jan 2010 2.0 × 10−3 1 Spatial-temporal 1

SE7 M2, S2, K1, O1 16 Jan 2010 2.0 × 10−3 1 Spatial-temporal 1

SE8 M2, S2, K1, O1 1 Jan 2010 2.0 × 10−3 1 Spatial 1

SE9 M2, S2, K1, O1 1 Jan 2010 2.0 × 10−3 1 Temporal 1

SE10 M2, S2, K1, O1 1 Jan 2010 2.0 × 10−3 1 Spatial-temporal 1.5

SE11 M2, S2, K1, O1 1 Jan 2010 2.0 × 10−3 1 Spatial-temporal 0.5

Table 1 
Detailed Model Settings of the Numerical Experiments
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As shown in Figure 3, the mean absolute errors (MAEs) of the M2, S2, K1, and O1 tidal harmonic constants 
(amplitudes and phase lags) between the AOs and the corresponding simulated results were largely reduced 
and tended to be stable, showing that the AOs were adequately assimilated by the adjoint method. In addi-
tion, the MAEs for COs were also significantly decreased and nearly reached the minimum values, further 
indicating that the model performance was significantly improved after assimilating the AOs. To further 

evaluate the model performance, the vectorial error (Fang et al., 2004) 
between the observed tidal harmonic constants in the COs and the corre-
sponding simulated values was also calculated, as follows:

VC
NM

A G A G

A G A

n

N

m

M

m n m n m n m n

m n m n m

  
 

 
 

1

1 1

2

, , , ,

, , ,

cos cos

sin
nn m n

Gsin , 2 (12)

where VC is the vectorial error; A and G are the observed amplitudes and 
phase lags, respectively; A and G are the simulated amplitudes and phase 
lags, respectively; and N and M are the number of observations and tidal 
constituents, respectively.

The calculated vectorial errors are listed in Table 2. Before the data as-
similation, the vectorial errors of M2, S2, K1, and O1 in Exp1 were 26.66, 
10.43, 6.36, and 7.58  cm, respectively; after the data assimilation, the 
vectorial errors of M2, S2, K1, and O1 were decreased to 14.18, 6.15, 4.01, 
and 3.24 cm, respectively. Overall, the mean vectorial error of the four 
principal tidal constituents between the COs and the corresponding sim-
ulated results was reduced to 6.90 cm from an initial value of 12.76 cm 
(Table 3), indicating that the model performance was improved with a 
reduction of 45.92% for the data misfit between the modeling results and 
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Figure 3. Variations of (a) MAEs of the M2 amplitude between the AOs and the corresponding simulated results (blue line) and those between the COs and the 
corresponding simulated results (red line) in Exp1, (b)–(c) same as (a) but for MAEs of the M2 phase lag and vectorial error, respectively. (d)–(f) Same as (a)–(c) 
but for S2. (g)–(i) Same as (a)–(c) but for K1. (j–l) Same as (a)–(c) but for O1. (m)–(o) Same as (a)–(c) but for the averaged values of the above-mentioned four 
tidal constituents.

No.

Vectorial error 
of M2 (cm)

Vectorial error 
of S2 (cm)

Vectorial error 
of K1 (cm)

Vectorial error 
of O1 (cm)

Before After Before After Before After Before After

Exp1 26.66 14.18 10.43 6.15 6.36 4.01 7.58 3.24

SE1 26.19 15.26 10.48 6.19 5.31 3.96 6.86 3.39

SE2 28.07 13.63 10.88 6.23 7.37 4.04 8.21 3.19

SE3 26.66 15.03 10.43 6.17 6.36 4.00 7.58 3.36

SE4 26.66 13.89 10.43 6.24 6.36 4.03 7.58 3.20

SE5 26.45 14.04 – – 6.20 4.12 – –

SE6 26.41 14.06 – – – – – –

SE7 26.67 14.22 10.48 6.16 5.98 4.01 7.17 3.14

SE8 26.66 16.55 10.43 6.94 6.36 4.40 7.58 7.19

SE9 26.66 21.33 10.43 8.20 6.36 5.39 7.58 5.37

SE10 45.09 21.10 17.58 10.13 12.45 6.32 12.85 4.84

SE11 15.62 8.95 6.53 3.52 2.12 1.97 3.38 1.78

Table 2 
Vectorial Errors of the Four Principal Tidal Constituents Between the COs 
and the Corresponding Simulated Results in the Numerical Experiments
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independent observations. Furthermore, as the number of iteration steps 
increased, the mean vectorial errors for the COs stabilized (Figure 3o), 
demonstrating that the model performance after assimilating the AOs 
was improved to nearly the maximum extent. The scatterplot in Figure 4 
indicates that the model after the data assimilation in Exp1 captured a 
majority (>95%) of all the observed tidal harmonic constants (ampli-
tudes and phase lags) in the COs with a factor of 2, showing that the 
simulated results in the shallow areas after assimilating the AOs were 
good enough, even though the tidal harmonic constants at the coastal 
tidal gauge stations were not assimilated. In addition, the correlation 
coefficients between the observed harmonic constants of the four tidal 
constituents and the corresponding simulated values were not less than 
0.90, further demonstrating that the observed harmonic constants were 
well captured by the assimilation results. The MAE between the M2 tidal 
amplitudes in the COs and the corresponding simulated results after the 
data assimilation in Exp1 was 7.95 cm (Figure 3a), and that for the M2 
phase lags was 5.94° (Figure 3b). In Lu and Zhang (2006), where only M2 
was simulated by AOs obtained from the T/P data, the MAEs between the 
M2 tidal harmonic constants (amplitude and phase lag) in the COs and 
the simulated results were 7.6 cm and 7.5°, which were 8.4 cm and 6.1° in 
Wang et al. (2014) and 8.25 cm and 6.82° in Zhang and Wang (2014). The 
results indicated that the simulated M2 after the data assimilation in this 
study was closer to the observations than those in Lu and Zhang (2006), 
Wang et al. (2014), and Zhang and Wang (2014), in which the adjoint data 
assimilation was also used but only M2 was simulated. Furthermore, the 

cotidal charts of the four principal tidal constituents in the BYECS (Figure 5) obtained in Exp1 displayed 
the same patterns as those in Fang et al. (2004), regardless of the locations of the amphidromic points or 
the tendencies of the co-amplitude and co-phase lines. In addition, the tidal current ellipses of M2, S2, K1, 
and O1 in the BYECS in Exp1 (Figure 6) were similar to those in Fang (1994) and Guo and Yanagi (1998), 
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No.

Mean vectorial error (cm) Correlation coefficient

Before After
Temporal 
variations

Spatial 
distributions

Exp1 12.76 6.90 1.00 1.00

SE1 12.21 7.20 0.98 0.96

SE2 13.63 6.77 0.99 0.98

SE3 12.76 7.14 0.99 0.98

SE4 12.76 6.84 1.00 1.00

SE5 16.32 9.08 0.75 0.99

SE6 26.41 14.06 0.71 0.99

SE7 12.58 6.88 0.98 1.00

SE8 12.76 8.77 – 0.91

SE9 12.76 10.07 0.75 –

SE10 21.99 10.60 0.96 0.93

SE11 6.91 4.05 0.89 0.81

Table 3 
Mean Vectorial Errors of the Four Principal Tidal Constituents Between 
the COs and the Corresponding Simulated Results in the Numerical 
Experiments, and the Correlation Coefficients Between the Estimated BFC 
in Exp1 and Those in the Sensitivity Experiments

Figure 4. Comparison of the simulated and observed (a) M2 amplitude and (b) M2 phase lag for the COs in Exp1. (c)–(d) Same as (a)–(b) but for S2. (e)–(f) 
Same as (a)–(b) but for K1. (g)–(h) Same as (a)–(b) but for O1. The 1:1, 1:2 and 2:1 lines are shown for reference in all the panels.
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suggesting that the simulated results after the data assimilation reproduced the tidal currents of the four 
principal tidal constituents in the BYECS.

Overall, the four simulated principal tidal constituents (M2, S2, K1, and O1) after the data assimilation 
were much closer to the COs than those before the data assimilation and those in previous similar studies, 
demonstrating that the adjoint data assimilation could significantly improve the model performance and 
provide a possible method to estimate reasonable BFCs in multi-constituent tidal models.

3.2. Sensitivity Experiments

As indicated by Wang, Zhang, et al. (2018), the estimated model parameters using the adjoint method may 
be affected by the model settings. There are two types of algorithms for computing sensitivity derivatives: 
the forward algorithms and the adjoint algorithms. The forward algorithms are more efficient for comput-
ing sensitivity derivatives of many output quantities to a few input parameters; the adjoint algorithms are 
more efficient for computing sensitivity derivatives of a few output quantities to many input parameters. 
Therefore, several sensitivity experiments using the local forward sensitivity analysis (Cacuci, 2003; Zou, 
Barcilon, et al., 1993) were carried out to test the sensitivity of the estimated BFCs to the model settings. In 
the sensitivity experiments, the model settings were changed, and the variation tendencies of the spatially 
and temporally varying BFCs were taken as the specific responses. The detailed model settings are listed 
in Table 1. In sensitivity experiment SE1 (SE2), the initial guess value of the BFC was set to 1.5 × 10−3 
(2.5 × 10−3) to test the influence of the initial guess. In SE3 (SE4), the step size in Equation 11 was decreased 
(increased) by 50% to test the influence of the magnitude of smoothness. In SE5, only M2 and K1 were 
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Figure 5. Cotidal chart for (a) M2, (b) S2, (c) K1, and (d) O1 in the BYECS in Exp1, in which the color and white lines 
denote the amplitude and phase lag, respectively.
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simulated, while only M2 was simulated in SE6, to test the influence of 
tidal constituents. In SE7, the starting time was changed to 16 January 
2010 from 1 January 2010, to test the influence of the starting time. The 
BFC was assumed to be spatially and temporally varying in all the above 
experiments, while the BFC was just spatially (temporally) varying in SE8 
(SE9) to test the influence of the distribution feature of the BFC. In SE10 
(SE11), the tidal amplitudes of the four principal tidal constituents (M2, 
S2, K1, and O1) were assumed to be 1.5 (0.5) times the actual values in the 
study area, and the other model settings were the same as those in Exp1.

As listed in Table  2, the vectorial errors of M2, S2, K1, and O1 between 
the COs and the corresponding simulated results after the data assimila-
tion in all the sensitivity experiments were less than those before the data 
assimilation. In addition, the mean vectorial errors in all the sensitivity 
experiments were substantially decreased, as listed in Table  3, indicat-
ing that the model performance was effectively improved even when the 
model settings were changed. To test the correlation between the esti-
mated BFCs in the benchmark experiment Exp1 and those in the sensi-
tivity experiments, the spatially and temporally varying BFCs estimated 
in all the experiments were spatially (temporally) averaged to obtain the 
temporal variations (spatial distributions) of the BFCs. The correlation 
coefficients between these temporal variations were not less than 0.71 
(Table  3), suggesting a significant positive correlation. Except for SE5, 
SE6, and SE9, the correlation coefficients were larger than 0.88. The cor-
relation coefficients between the spatial distributions of temporally aver-
aged BFCs in all the sensitivity experiments and that in Exp1 were larger 
than 0.80, indicating a significant positive correlation.

Overall, the model performances in all the sensitivity experiments were 
significantly improved by assimilating the AOs using the adjoint method. 
Furthermore, both the temporal variations and spatial distributions of 

the estimated BFCs in all the sensitivity experiments were significantly positively correlated with those in 
Exp1, indicating that the temporal variations and spatial distributions of the estimated BFCs were robust.

3.3. Temporal Variations and Spatial Distributions of the Estimated BFC

The temporal variations of the spatially averaged sea surface elevation and estimated BFCs in Exp1 are 
shown in Figure 7a. The variation period of sea surface elevation was roughly semidiurnal and approx-
imately twice that for the BFCs. In addition, when the tidal range was larger, the variation amplitude of 
the BFCs was also larger. As shown in Figure 7b, the temporal variations of the spatially averaged current 
speed and estimated BFC in Exp1 had nearly the opposite trend, with a correlation coefficient of −0.59. 
Furthermore, there was a small-time lag between the temporal variations in the current speed and esti-
mated BFC in Exp1. The significant spectral peaks in the power spectral densities of both the temporally 
varying BFC and current speed in Exp1 appeared in the quarter-diurnal frequency band (Figure 8a), further 
demonstrating the correlation between the BFC and current speed. As listed in Table 3, the correlation coef-
ficients between the temporal variations of the BFC estimated in Exp1 and those in SE5, SE6, and SE9 were 
much less than those in other sensitivity experiments. As shown in Figure 9a, the temporal variations of 
the spatially averaged BFCs estimated in SE5 were significantly negatively (R = −0.60) correlated with the 
spatially averaged current speed and exhibited a more regular quarter-diurnal variation than those in Exp1. 
In SE6, it was obvious that both the spatially averaged BFCs and current speed were regularly quarter-di-
urnal variations (Figure 8c), and the amplitudes were nearly constant, except for those near the endpoints 
(Figure 9b). The results demonstrated that the temporal variations in the estimated BFCs were affected by 
the tidal constituents. Because M2 was the dominant tidal constituent in the BYECS, the estimated BFCs in 
SE5 and SE6 had similar temporal patterns to those in Exp1; however, the correlation coefficients were not 
as large as those for other sensitivity experiments in which the same four tidal constituents were simulated. 
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Figure 6. Tidal current ellipses for (a) M2, (b) S2, (c) K1, and (d) O1 in the 
BYECS in Exp1.
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When the BFC was assumed to be temporally varying in SE9, there were some differences between the esti-
mated BFCs and those in Exp1, but the temporally varying BFC had a similar pattern of the power spectral 
densities with that in Exp1 (Figure 8) and were also significantly negatively (R = −0.62) correlated with the 
temporal variations of the spatially averaged current speed. Although the correlation coefficients between 
the temporal variations of the BFC estimated in Exp1 and those in SE5, SE6, and SE9 were not very large, 
the temporal variations of the estimated BFCs in all the experiments were significantly related to the cur-
rent speed, which was the same as that obtained by analyzing the field observations from nine data points 
in Howarth and Souza (2005). The spatially averaged BFC, sea surface elevation, and current speed in Exp1 
were phase-averaged using the method in Voulgaris and Meyers (2004) and Murphy and Voulgaris (2006), 
and the results are shown in Figure 10. In this typical tide cycle, the mean BFCs during both flood tide and 
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Figure 7. Time series of (a) spatially averaged BFC (red line) and sea surface elevation (blue line) in Exp1. (b) same as 
(a), but for spatially averaged BFC (red line) and current speed (blue line) in Exp1.

Figure 8. Power spectral densities of the spatially averaged BFC (blue line) and current speed (red line) in (a) Exp1, (b) SE5, (c) SE6, and (d) SE9. In all panels, 
the dashed lines denote the corresponding 5% significant level against red noise.
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ebb tide were 0.0021, which was close to the initial guess value of BFC (0.002). The phase-averaged BFC 
in Exp1 was significantly correlated with the phase-averaged current speed with a time lag. The related lag 
corrections indicated a lead (30°, i.e., 1.03 h) of the phase-averaged current speed relative to phase-averaged 
BFC with a correlation coefficient of −0.97, and the possible reason for the time lag would be discussed in 
the following section.

The spatial variabilities of the temporally averaged BFCs and current speed in Exp1 are shown in Figure 11. 
The spatial distributions of the estimated BFCs in Exp1 were negatively (R = −0.18) correlated with the 
current speed, especially in the areas near the Yangtze Estuary and Hangzhou Bay (Figure 11d). When the 
water depth was larger than 500 m in the Okinawa Trough, the temporally averaged BFCs in Exp1 were 
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Figure 9. Time series of spatially averaged BFC (red line) and current speed (blue line) in (a) SE5, (b) SE6, and (c) SE9.

Figure 10. Phase-averaged tidal variabilities of (a) spatially averaged BFC (red line) and sea surface elevation (blue 
line) in Exp1. (b) same as (a), but for BFC (red line) and current speed (blue line) in Exp1.



Journal of Geophysical Research: Oceans

nearly constant (Figure 11d), which may be because the temporally averaged current speeds in this area 
were nearly constant (Figure  11b). The estimated BFCs in Liaodong Bay, Bohai Bay, Laizhou Bay, west 
Korea Bay, Gyeonggi Bay, Hangzhou Bay, Taiwan Strait, and the area near Taiwan Island were relatively 
large (Figures 11c and 11d), which may be related to the local topography or form drag (Bo & Ralston, 2020; 
Edwards et al., 2004; Warner et al., 2013; Warner & MacCready, 2009).

Overall, the estimated BFCs in Exp1 had significant temporal variations and spatial distributions. The tem-
poral variations of the spatially averaged BFCs exhibited a strong periodicity, which were negatively corre-
lated with the current speed with a time lag and were much larger with a larger tidal range. In addition, the 
temporal variations in the estimated BFCs were affected by the tidal constituents. The spatial distributions 
of the temporally averaged BFCs were relatively large in some shallow areas, which may be related to the 
water depth (Li et al., 2004). In addition, the values were close to the initial guess values in the deep areas 
with water depths larger than 500 m, which may be attributed to the nearly constant current speed in these 
areas.

4. Discussion
4.1. Mechanisms for Variations of the Estimated BFC

There are many possible factors affecting the variations in the BFC, as follows:

 (1)  current speed (Cheng et al., 1999; Fan et al., 2019; Lozovatsky et al., 2008; Ludwick, 1975; Safak, 2016; 
Wang et al., 2004; Xu et al., 2017);

 (2)  water depth (Li et al., 2004; Soulsby, 1983; Ullman & Wilson, 1998; Wang et al., 2014);

 (3)  boundary-layer stratification caused by suspended sediment (Green & McCave, 1995);

 (4)  vertical stratification (Ullman & Wilson, 1998);
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Figure 11. Spatial variabilities of temporally averaged (a) BFC estimated in Exp1, and (b) current speed in Exp1. (c)–(d) Same as (a), but for subarea in the 
BYECS. The locations of mooring station SH3 (blue circle) and other seven stations (red asterisks) in Fan et al. (2019) are shown in (c) and (d). Bathymetric 
contours at 30 m (gray line), 115 m (magenta line) and 500 m (cyan line) are shown in all the panels.
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 (5)  sea floor types or bottom roughness (Cheng et  al.,  1999; Howarth & Souza,  2005; Mofjeld,  1988; 
Soulsby, 1983);

 (6)  waves (Christoffersen & Jonsson, 1985; Drost et al., 2018);
 (7)  phase of tide (Howarth & Souza, 2005; Soulsby, 1983); and
 (8)  form drag (Bo & Ralston, 2020; Edwards et al., 2004; Warner et al., 2013; Warner & MacCready, 2009).

The model used to estimate the BFC in this study is the 2D multi-constituent tidal model without consid-
ering vertical stratification, suspended sediment transport, and waves, so the boundary-layer stratification 
caused by suspended sediment, vertical stratification, sea floor types or bottom roughness, form drag, and 
waves could not be analyzed directly. In addition, the phase of the tide is involved in the variations in the 
current speed. Therefore, the current speed and water depth are considered as potential root causes of the 
spatial and temporal variations in the BFCs.

4.1.1. Interpretation of BFC Variations Using Current Speed

The simulated current speeds in Exp1 were divided into segments with 0.01 m/s intervals. The correspond-
ing temporally and spatially varying BFCs estimated in Exp1 were averaged in each segment, and the results 
are shown in Figure 12a. Except for several outliers, the averaged BFCs in Exp1 increased when the current 
speed was less than 0.31 m/s and then decreased with increasing current speeds, which was similar to the 
pattern of the wind drag coefficient estimated by analyzing the current observations recorded during a 
major tropical cyclone in Jarosz et al. (2007). Cheng et al. (1999) analyzed 43 days of field data in South San 
Francisco, California. They found that the BFC was inversely proportional to the reference velocity when the 
mean velocity was larger than 0.25–0.3 m/s; in addition, the relationship was not clear when the mean ve-
locity was less than 0.25–0.3 m/s. Wang et al. (2004) determined a similar conclusion to Cheng et al. (1999) 
by analyzing the observations of the boundary layer parameters over the intertidal flats of northern Jiangsu, 
China, with the critical velocity of 0.3 m/s. It was found that both the critical current speed (0.31 m/s) and 
the pattern of BFC variations in this study, especially when the current speed was larger than the critical 
current speed, were nearly the same as those in Cheng et al. (1999) and Wang et al. (2004), further indicat-
ing the reasonability of the BFCs estimated using the adjoint method. Fan et al. (2019) estimated the BFC in 
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Figure 12. (a) Average values of the estimated BFCs in Exp1 (red line with circles) change as a function of 
corresponding current speed with 0.01 m/s interval. The location of 0.31 m/s is denoted by the black dotted line. (b) 
Averaged values of observed BFC at station SH3 in Fan et al. (2019) (blue line with asterisks) and estimated BFCs at 
station SH3 in Exp1 (red line with circles) change as a function of corresponding current speed with 0.01 m/s interval.



Journal of Geophysical Research: Oceans

the BYECS by analyzing high-frequency field observations. As shown in Figure 12b, the magnitude and var-
iations in the estimated BFCs at station SH3 (122.57°E, 37.03°N, Figure 11c) in Exp1 were nearly the same 
as those in Fan et al. (2019) when the current speed was larger than 0.1 m/s, suggesting that the estimated 
BFCs using the adjoint method in Exp1 were nearly consistent with the observed BFCs. Only four principal 
tidal constituents were simulated in Exp1, which may account for the inconsistency between the observed 
BFCs in Fan et al. (2019) and the estimated BFCs in this study when the current speed was less than 0.1 m/s.

There is a patchy distribution of sea floor mud in the BYECS (Hu et al., 2011; Qiao et al., 2017), which 
is the result of the transport of river input sediments by the ocean current (Bian et al., 2013), indicating 
that suspended sediment transport is a common and influential phenomenon in the BYECS. Therefore, it 
is assumed that the current speed affected the BFC variations by influencing the sediment transport and 
seabed roughness. When the current speed was 0.31 m/s, the calculated bottom shear stress was approxi-
mately 0.065 N/m2, which was close to the critical shear stress for the erosion of silt in the BYECS indicated 
in Bian et al. (2013) with a value of 0.07 N/m2. Therefore, it was plausible to hypothesize that the critical 
current speed for erosion and deposition was approximately 0.31 m/s. When the current speed was less 
than 0.31 m/s, the suspended sediment was deposited on the seabed, which led to substantial random ir-
regularities on the seabed surface and a higher value of roughness length (Cheng et al., 1999), increasing 
the BFC. In a typical tidal cycle, when the current speed increased to 0.31 m/s, the suspended sediment was 
deposited on the seabed all the time, and the cumulative effect caused the BFC to increase gradually. On the 
contrary, when the current speed was larger than 0.31 m/s, the deposited sediment would become resus-
pended. A higher current speed resulted in a much smoother bedform and a reduction in form drag at the 
sediment-water interface (Cheng et al., 1999; Van Rijn, 1993). In addition, as the current speed increased, 
the size of turbulent eddies also increased in the flow, which resulted in that the length between the top 
of the bedform and the typical level at which the current speed diminished (i.e., seabed roughness length) 
would decrease (Vincent & Harvey, 1976; Wang et al., 2004). Therefore, the BFC would decrease with a cur-
rent speed larger than 0.31 m/s. The lag of sediment movement could cause a phase lag of the suspended 
sediment concentration behind the current velocity in tidal environments (Yu et al., 2011), which may be 
the reason for the time lag between the temporally varying BFC and current speed. Therefore, the current 
speed would affect the BFC by influencing the erosion deposition of the sediment on the seabed and chang-
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Figure 13. (a) Average values of the estimated BFCs in Exp1 (red line with circles) change as a function of 
corresponding water depth with 5 m interval, and the observed BFCs versus water depth in Fan et al. (2019) (blue line 
with asterisks). (b) Same as (a) but for those when the water depth is less than 500 m. Along the bottom, the magenta 
line, cyan line, and green line denote periods with decreasing BFCs, increasing BFCs and constant BFCs, respectively.
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es in seabed roughness. In addition, the variation trend was successfully reproduced by the estimated BFC 
using the adjoint method, although the sediment transport was not simulated in this study.

4.1.2. Interpretation of BFC Variations Using Water Depth

The water depths were divided into segments with 5 m intervals. The corresponding spatially and tempo-
rally varying BFCs estimated in Exp1 were averaged in each segment, and the results are shown in Fig-
ure 13. When the water depth increased, the averaged BFC in Exp1 first decreased until the water depth 
was approximately 30 m; then, the BFC increased until the water depth was nearly 115 m. Finally, the BFC 
decreased to a constant value (0.002). The variation trend of the BFC in this study was similar to that re-
ported by Wang et al. (2014). Except for one outlier with a water depth of 68 m, the observed BFCs at seven 
other in situ stations (Figures 11c and 11d) in the BYECS in Fan et al. (2019) exhibited the same pattern as 
the estimated BFCs in this study: when the water depth was less than 30 m, the BFCs decreased with an 
increasing water depth; conversely, the BFCs increased with increasing water depth when the water depth 
was between 30  and 75 m, as shown in Figure 13b. The variation trend of the BFC as a function of water 
depth in Fan et al. (2019) was also obtained by analyzing tidal velocity data in the James River Estuary in 
Li et al. (2004). The consistency between the variations in the BFC with water depth in Exp1 and those in 
Fan et al. (2019) and Li et al. (2004) further demonstrated that the estimated BFC using the adjoint method 
in Exp1 was reasonable.

When the water depth was less than 30 m, the BFC decreased with increasing water depth, which was 
consistent with the Chezy-Manning formula (Ludwick, 1975; Lyu & Zhu, 2018). When the water depth was 
between 30  and 115 m, the average current speeds were larger than 0.31 m/s in most areas (Figure 11b), 
except those near amphidromic points and south of the Hangzhou Bay mouth. Therefore, when the water 
depth increased, the average current speeds decreased, which led to increased BFCs, as shown in Figure 12a. 
When the water depth was between 115  and 500 m, the average current speeds were less than 0.31 m/s and 
decreased with increasing water depth (Figure 11b), which resulted in the BFC decreasing with the increas-
ing water depth. When the water depth was larger than 500 m in the BYECS, the average current speeds 
were nearly constant with changing water depths (Figure 11b); therefore, the BFC was also nearly constant.

Overall, the variations in the BFC estimated using the adjoint method in Exp1 were primarily related to 
the current speed and water depth, which could be explained by considering the erosion-deposition of the 
sediment on the seabed and the changes in seabed roughness.

4.2. Present Parameterization of BFC in Tidal Models

In addition to the BFC, many factors influence the simulation of the hydrodynamic conditions and sediment 
transport, such as the accuracy of the bottom topography and bottom shear stress induced by waves. Howev-
er, for the tidal models, the wave bottom shear stress can be ignored; in addition, the bottom topography is 
difficult to correct. Therefore, the BFC is the most significant parameter in the tidal models, and an accurate 
estimation of the BFC is fundamental to calibrate the tidal model (Ullman & Wilson, 1998). Traditionally, 
the BFC is set to a constant, different constant in different subdomains, Chezy-Manning formula, spatially 
varying values, and so on (Fan et al., 2019). Wang et al. (2014) simulated M2 in the BYECS by assimilating 
the T/P altimeter data by estimating the open boundary conditions using the above different schemes of the 
BFC. They found that the best-simulated results were obtained when the spatially varying BFC estimated by 
the adjoint method was used. The adjoint method has been widely used to estimate the BFC in the East Chi-
na Seas (Guo et al., 2017; Lu & Zhang, 2006; Zhang & Lu, 2010), but only the M2 tide has been considered. 
When only the M2 tide was simulated in SE6, the correlation coefficient between the spatial distribution of 
the estimated BFCs in SE6 and Exp1 was 0.99 (Table 3). In addition, when the BFC was assumed to exhibit 
only a spatial distribution in SE8, the estimated result was significantly positively (R = 0.91) correlated with 
the spatial distribution of the estimated BFCs in Exp1. The results indicate that the spatially varying BFC 
estimated in previous studies can still be used in the simulation of multiple tidal constituents. The vectorial 
error of O1 in SE8 was decreased from 7.58 cm to just 7.19 cm that was much larger than that of 5.37 cm in 
SE9, showing the necessity to consider the temporal variations of BFCs. However, the temporal variations 
of the estimated BFCs were related to the tidal constituents, as indicated by SE5 and SE6. In addition, when 
the BFC was assumed to be only temporally varying in SE9, the estimated BFCs were also slightly different 
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from the temporal variation of the spatially averaged BFCs in Exp1, as shown in Figure 9c. Therefore, when 
the temporal variations of the BFC are applied, the features of the tidal system in the study area should be 
pre-studied to reasonably select the tidal constituents and determine whether the spatial distribution of 
BFC should also be considered.

Although the BFC has been widely estimated by analyzing the observations or assimilating the observa-
tions with data assimilation methods, a universal and recognized empirical formula of BFC has not been 
proposed, because the BFC depends on various factors, including the bottom roughness, sea floor type, and 
hydrodynamic conditions (Fan et al., 2019). The classical Chazy-Manning formula for BFC has been used 
in many numerical models, but further research is necessary to explore the accurate setting of Manning’ 
n coefficient, as done by Mayo et al. (2014), Sraj et al. (2014), Demissie and Bacopoulos (2017), Slivinski 
et al. (2017), and Siripatana et al. (2018). In this study, the spatially and temporally varying BFCs are esti-
mated by assimilating the harmonic constants of four principal tidal constituents in the BYECS. In addition, 
the spatially varying BFC and the temporally varying BFC are also included and discussed. Furthermore, 
the estimated BFCs are nearly consistent with the observed BFCs, which is a rare comparison between the 
estimated and observed BFCs. Therefore, the estimation of BFCs using the adjoint method is significantly 
improved in this study compared with previous studies. However, as pointed out by Fringer et al. (2019), 
more research is needed to parameterize the bottom drag by considering the bottom roughness, bedforms, 
vegetation, and corals. The estimation of BFCs is often ill-posed, a more in-depth analysis of the identifiabil-
ity of BFCs and the application of the regularization method are needed in future studies (Navon, 1998). In 
addition, because the BFC has upper and lower limits, a bound-constrained algorithm, such as the barrier 
method (Zhu & Navon, 1999), will be used to improve the efficiency of the minimization procedure and 
estimate the spatially and temporally varying BFCs. Furthermore, the tidal properties change temporally 
and spatially with many possible driving mechanisms (Haigh et al., 2019), which increases the challenge 
of data assimilation, and its impact on the estimation of BFCs should be further investigated in future 
studies. Because the tides are periodic, the memory of the impact of the optimally estimated BFCs is long 
for the tidal models. It is believed that a universal and recognized setting scheme of the BFC, by which the 
subjectivity of numerical modeling is significantly reduced, will be possibly proposed in the future, based 
on the developments of the theoretical understanding of the BFC, observation technologies of the bottom 
boundary layer, and the data assimilation method.

5. Conclusions
A reliable estimation of BFC is critical for precisely determining the hydrodynamic conditions and sedi-
ment transport rates, which are valuable research fields of physical oceanography and provide essential 
information for the design and planning of coastal ocean engineering. The BFC has been verified to be spa-
tially and temporally varying by analyzing in situ observational data in previous studies. In this study, the 
BFC is assumed to be spatially and temporally varying in a 2D multi-constituent tidal model.

In the benchmark experiment Exp1, based on the 2D multi-constituent tidal model and its adjoint model, 
the spatially and temporally varying BFCs were estimated by assimilating the harmonic constants of four 
principal tidal constituents M2, S2, K1, and O1, obtained from the T/P altimeter data, with the adjoint method 
in the BYECS. The MAEs and vectorial errors of the four principal tidal constituents between the independ-
ent COs at tidal gauge stations and the simulated results were significantly decreased after the data assim-
ilation (Figure 3); in addition, the mean vectorial error of the four principal tidal constituents was reduced 
to 6.90 cm from an initial value of 12.76 cm (Table 3), indicating that the model performance was improved 
with a reduction of 45.92% for the data misfit between the modeling results and independent observations. 
In the sensitivity experiments, the model settings were changed; however, the model performance was also 
significantly improved, and the correlation coefficients between the spatial and temporal variations of the 
estimated BFCs in Exp1 and the sensitivity experiments were not less than 0.71 (Table 3), showing the ro-
bustness of the estimated BFCs.

The temporal variations of the spatially averaged BFCs in Exp1 were negatively correlated with the cur-
rent speed with a time lag of approximately 1 h (Figure 10) and were much larger with an extended tidal 
range (Figure 7a). The spatial distributions of the temporally averaged BFCs in Exp1 depended on both the 
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current speed and water depth. When the variations in the BFC as a function of the corresponding current 
speed were analyzed, it was found that the estimated BFCs at station SH3 in Exp1 were nearly consistent 
with the corresponding observed values in Fan et al.  (2019) (Figure 12b), indicating the reasonability of 
the estimated BFCs. In addition, with the increasing current speed, the BFC was first increased and then 
decreased with a critical current speed of 0.31 m/s (Figure  12a), which was similar to that obtained by 
analyzing the in situ observations in Cheng et al. (1999) and Wang et al. (2004). This phenomenon could 
be attributed to the erosion-deposition of the sediment on the seabed and changes in seabed roughness 
under different current speeds. By analyzing the variations in BFC as a function of the corresponding water 
depth, the variation trends were the same as those observed in the BYECS in Fan et al. (2019) when the 
water depth was less than 100 m (Figure 13), further demonstrating the reasonability of the estimated BFCs. 
With increasing water depths, BFC first decreased until the water depth was approximately 30  m, then 
increased until the water depth was nearly 115 m, and finally decreased to a constant value, which could 
be explained by the changes in the current speed and the Chezy-Manning formula in different stages. The 
temporal variations and spatial distributions of the estimated BFCs in Exp1 and the possible mechanisms 
discussed can be beneficial for determining reasonable parameter for the bottom stress and setting the BFC 
in multi-constituent tidal models.

Appendix: Brief Glossary of the Acronyms in this Study
2D Two-dimensional.
AO Assimilating observation.
BFC Bottom friction coefficient.
BYECS Bohai, Yellow, and East China Seas.
CO Checking observation.
MAE Mean absolute error.
T/P TOPEX/Poseidon.

Data Availability Statement
The TOPEX/Poseidon altimeter data are provided by the CTOH/LEGOS, France (http://ctoh.legos.obs-mip.fr).
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