副教授
当前位置: 首页 > 师资力量 > 副教授 > 正文

秦浩

浏览: 编辑: 来源: 时间:2015年08月21日 11:10


秦浩(Dr. Hao Qin,男,博士,副教授,1990年生。长期致力于海洋科学、海洋工程与技术领域的教学和科研工作,重点开展人工智能海洋工程、波浪与结构物相互作用、海洋可再生能源、海洋防灾减灾等方面的研究。主持、参与国家重点研发计划项目、国家自然科学基金项目等科研项目10余项,发表学术论文50余篇,出版专著1部,授权中美发明专利10项,获得第十八届中国海洋(岸)工程学术讨论会青年优秀论文奖,获得海洋工程科学技术特等奖、中国产学研合作创新成果一等奖等部级奖励5指导本科生获得中国国际大学生创新大赛省级金奖、全国铜奖3。担任ISOPE国际会议分会场主席,担任Ocean EngineeringApplied Ocean ResearchJournal of Fluids and StructuresEnergyPhysics of FluidsShips and Offshore StructuresJournal of Marine Science and Engineering10个海洋工程领域重要期刊审稿人及部分期刊客座编辑。


联系方式

通讯地址:湖北省武汉市洪山区鲁磨路388号中国地质大学(武汉)海洋学院

电子邮箱:qinhao@cug.edu.cn


招生情况

招生方向:海洋科学(物理海洋学方向),资源与环境(海洋动力与应用方向

研究方向:人工智能海洋工程、波浪与结构物相互作用、海洋可再生能源、海洋防灾减灾等,其中部分方向具有较强的交叉学科特征(如AI+海工,GIS+海洋等

欢迎各类理工科专业本科生报考研究生欢迎海洋学院本科生联系开展科研、实践、竞赛和毕业论文工作(请邮件联系)。


教育经历

20139—20186月:上海交通大学,船舶与海洋工程专业(直接攻读博士),获博士学位;

20099—20136月:上海交通大学,船舶与海洋工程专业,获学士学位。


工作经历

20217至今:中国地质大学(武汉)海洋学院,副教授;

20199至今:智慧海洋信息技术湖北省工程研究中心,副主任;

20195—202210月:中国地质大学(武汉)海洋学院,海洋工程与技术系副系主任;

20187—20216月:中国地质大学(武汉)海洋学院,特任副教授


主持项目

[1] 国家重点研发计划-子课题,海上遇险目标立体搜寻与高清晰观测关键技术——协同搜寻链条研究,2022.11-2025.10,主持;

[2] 国家自然科学基金-面上项目,基于深度强化学习的振荡体式波浪能转换装置捕能控制与协同优化研究,2025.01-2028.12,主持;

[3] 国家自然科学基金-青年基金项目,畸形波作用下考虑流固耦合效应的海洋平台结构动力响应研究,2022.01-2024.12,主持;

[4] 广东省海上风电联合基金-面上项目,基于一体化耦合算法和快速预测模型的海上浮式风电平台系泊系统设计优化研究,2023.11-2026.10,主持;

[5] 广东省自然科学基金-面上项目,基于深度强化学习方法的波浪能耗散与转换主动控制策略研究与应用,2024.01-2026.12,主持;

[6] 广东省区域联合基金-青年基金项目,畸形波作用下考虑水弹性效应的海洋平台结构动力响应研究,2020.01-2022.12,主持;

[7] 深圳市科技重大专项-可持续发展专项,海洋动力灾害智能预报预警与风险防控技术研究与应用示范,2025.01-2027.12,主持;

[8] 深圳市基础研究专项-重点项目,气候变化背景下的全球与粤港澳大湾区海平面变化机理与上升趋势研究,2020.11-2023.11,主持;

[9] 广东省海洋灾害综合防治体系建设项目,湛江市海洋灾害风险管控能力提升一期,2024.09-2025.05,主持;

[10] 广东省海洋灾害综合防治体系建设项目,惠州市二期配套工程,2024.10-2026.01,主持;

[11] 广东省渔业捕捞和养殖业防灾减灾体系建设与维护专项,汕尾市重要渔港、重点增养殖区承灾体脆弱性调查与评估项目,2019.01-2020.01,主持;

[12] 广东省渔业捕捞和养殖业防灾减灾体系建设与维护专项,惠州市海洋与渔业局惠州市渔业捕捞与养殖业防灾减灾体系建设与维护项目,2019.01-2019.12主持

[13] 广东省渔业捕捞和养殖业防灾减灾体系建设与维护专项,江门市重要渔港、重点增养殖区承灾体调查及风险区划项目,2019.01-2019.12主持;

[14] 福建省船舶与海洋工程重点实验室开放基金,畸形波作用下集装箱船运动响应及甲板上浪数值模拟研究,2022.07-2024.06,主持;

[15] 中船集团第七一九研究所项目,***协同控制方法研究,2023.07-2023.12,主持;

[16] 深圳市海洋监测预报中心项目,深圳海域海洋动力环境预报系统开发建设项目运维,2021.01-2021.12,主持;

[17] 中海油信息科技有限公司项目,新建港口船舶污染海洋环境风险评测及应急预案技术服务,2021.07-2022.10,主持。


学术论文

2025年:

[1] Qin, H., Su, H.*, Wen, Z., Liang, H., 2025. Latching control of a point absorber wave energy converter in irregular wave environments coupling computational fluid dynamics and deep reinforcement learning. Applied Energy, 396, 126282.

[2] Yu, L., Qin, H.*, Wei, W., Ma, J., Weng, Y., Jiang, H., Mu, L., 2025. Storm surge risk assessment based on LULC identification utilizing deep learning method and multi-source data fusion a case study of Huizhou City. Remote Sensing, 17(4), 657. (师生合作)

[3] Guo, L., Peng, S., Yuan, Y.*, Tang, W., Qin, H., 2025. Dynamic response reconstruction technique investigation of catenary submarine cables based on inverse finite element method. Ocean Engineering, 336, 121779.

[4] Wang, J., Qin, H., Tu, H., Wang, D., Li, Z., Li, B., Su, H., Liu, C., Qin, L., Mu, L.*, 2025. Experimental research on drift of rescue targets in a basin under controllable wind-wave-current environment. Ocean Engineering, 337, 121946.

[5] Du, T., Qin, H., Li, Y., Jiang, H.*, 2025. Point-by-point data-driven approach for statistical downscaling of integrated wave parameters in coastal regions. Ocean Engineering, 329, 121174.

[6] Wen, Z., Qin, H.*, Liang, H., Su, H., 2025. A DRL control model for wave energy capture in the CFD-based wave-structure interaction environment, ICCES-2025, Changsha, China. (师生合作)

[7] Wen, Z., Qin, H.*, Liang, H., Su, H., 2025. Active control of a point absorber wave energy converter using a coupled DRL-CFD model. ISOPE-2025, Seoul, Korea. (师生合作)

[8] Li, B., Qin, H.*, Long, Q., Jiang, H., 2025. Dynamic responses of a floating offshore wind turbine platform under rogue wave conditions using a coupled CFD-FEM method. ISOPE-2025, Seoul, Korea. (师生合作)

2024年:

[1] Qin, H.*, Liang, H., Su, H., Wen, Z., 2024. A parallelized environmental-sensing and multi-tasks model for intelligent marine structure control in ocean waves coupling deep reinforcement learning and computational fluid dynamics. Physics of Fluids, 36(8), 087152.

[2] Su, H., Qin, H.*, Wen, Z., Liang, H., Jiang, H., Mu, L., 2024. Optimization of latching control for duck wave energy converter based on deep reinforcement learning. Ocean Engineering, 309, 118531. (师生合作)

[3] Liang, H., Qin, H.*, Su, H., Wen, Z., Mu, L., 2024. Environmental-sensing and adaptive optimization of wave energy converter based on deep reinforcement learning and computational fluid dynamics. Energy, 297, 131254. (师生合作)

[4] Wang, J., Qin, H.*, Zhang, W., Zhang, H., Mu, L., 2024. Experimental and numerical investigation on the interaction between rogue waves and a KVLCC2 in head sea. Ocean Engineering, 297, 117167. (师生合作)

[5] Wei, W., Huang, S., Qin, H.*, Yu, L., Mu, L., 2024. Storm surge risk assessment and sensitivity analysis based on multiple criteria decision-making methods: A case study of Huizhou city. Frontiers in Marine Science, 11, 1364929. (师生合作)

[6] Yu, L., Qin, H.*, Huang, S., Wei, W., Jiang, H., Mu, L., 2024. Quantitative study of storm surge risk assessment in undeveloped coastal area of China based on deep learning and geographic information system techniques: A case study of Double-Moon Bay Zone. Natural Hazards and Earth System Sciences, 24(6), 2003-2024. (师生合作)

[7] Zhang, X., Fu, F.*, Guo, J., Qin, H., Sun, Q., Hu, Z., 2024. Numerical simulation and on-site measurement of dynamic response of flexible marine aquaculture cages. Journal of Marine Science and Engineering, 12(9), 1625.

[8] Luo, Y., Xu, Y., Qin, H., Jiang, H.*, 2024. Wavelength cut-off error of spectral density from MTF3 of SWIM instrument onboard CFOSAT: an investigation from buoy data. Remote Sensing, 16(16), 3092.

[9] Song, J., Su, H., Qin, H.*, Mu, L., 2024. Optimizing wave energy harvesting with model-free reinforcement learning. ISOPE-2024, Rhodes, Greece.

2023年:

[1] Liang, H., Qin, H.*, Mu, L., Su, H., 2023. Real-time model for wave attenuation using active plate breakwater based on deep reinforcement learning. Ocean Engineering, 277, 114320. (师生合作)

[2] Wang, J., Qin, H.*, Hu, Z., Mu, L., 2023. Three-dimensional study on the interaction between a container ship and freak waves in beam sea. International Journal of Naval Architecture and Ocean Engineering, 15, 100509. (师生合作)

[3] Liang, H., Qin, H.*, Mu, L., 2023. Numerical study on an actively controlled flat plate breakwater. International Journal of Offshore and Polar Engineering, 33(01), 62-70. (师生合作)

[4] Zhang, H., Tang, W.*, Wang, B., Qin, H., 2023. The occurrence probability prediction model of 2D and 3D freak waves generated by wave superposition. Ocean Engineering, 270, 113640.

[5] Zhu, K., Jiang, R., Sun, Z., Qin, H., Cheng, Z., Wang, Y.*, Zhao, E., 2023. Numerical study on the effects of the multiple porous medium breakwaters on the propagation of the solitary wave. Journal of Marine Science and Engineering, 11(3), 565.

[6] Wu, Y., Zhu, K.*, Qin, H., Wang, Y., Sun, Z., Jiang, R., Wang, W., Yi, J., Wang, H., Zhao, E., 2023. Numerical investigation on the influence of breakwater and the sediment transport in Shantou offshore area. Applied Sciences, 13(5), 3011.

[7] Zhao, E., Mu, L., Qin, H., 2023. Advances in Applied Marine Sciences and Engineering. ISBN: 9783036582085.

2022年:

[1] Qin, H., Wang, J., Zhao, E.*, Mu, L., 2022. Numerical study of rogue wave forces on flat decks based on the Peregrine breather solution under finite water depth. Journal of Fluids and Structures, 114, 103744.

[2] Wang, S., Mu, L., Qin, H.*, Wang, L., Yao, Z., Zhao, E., 2022. The utilization of physically based models and GIS techniques for comprehensive risk assessment of storm surge: A case study of Huizhou. Frontiers in Marine Science, 9, 939380. (师生合作)

[3] Liang, H., Zhao, E., Qin, H.*, Mu, L., Su, H., 2022. A model coupling CFD and DRL: investigation on wave dissipation by actively controlled flat plate. IEEE Access, 10, 98290-98308. (师生合作)

[4] Zhang, C., Zhang, W., Qin, H.*, Han, Y., Zhao, E., Mu, L., Zhang, H., 2022. Numerical study on the green-water loads and structural responses of ship bow structures caused by freak waves. Applied Sciences, 13(11), 6791. (师生合作)

[5] Zhang, H., Tang, W.*, Yuan, Y., Xue, H., Qin, H., 2022. The three-dimensional green-water event study on a fixed simplified wall-sided ship under freak waves. Ocean Engineering, 251, 111096.

[6] Zhang, Z., Pan, C., Zeng, J., Chen, F., Qin, H., He, K., Zhu, K., Zhao, E.*, 2022. Hydrodynamics of tidal bore overflow on the spur dike and its influence on the local scour. Ocean Engineering, 266, 113140.

[7] Zhang, C., You, D., Qin, H.*, 2022. Numerical study on the bridge deck responses under solitary waves. ISOPE-2022, Shanghai, China. (师生合作)

[8] Wang, J., Qin, H.*, Mu, L., Li, Y., 2022. Numerical study on the ship motion responses under freak waves. ISOPE-2022, Shanghai, China. (师生合作)

[9] Liang, H., Qin, H.*, Mu, L., 2022. Numerical study on an actively controlled flat plate breakwater. ISOPE-2022, Shanghai, China. (师生合作)

2021年以前:

[1] Zhang, H., Yuan, Y.*, Tang, W., Xue, H., Liu, J., Qin, H., 2021. Numerical analysis on three-dimensional green water events induced by freak waves. Ships and Offshore Structures, 16, 33-43.

[2] Hu, Z., Zhang, X.*, Li, Y., Li, X., Qin, H., 2021. Numerical simulations of super rogue waves in a numerical wave tank. Ocean Engineering, 229, 108929.

[3] Qin, H., Mu, L.*, Tang, W., Hu, Z., 2020. A concurrent multi-process refinement method applied in two-dimensional strong-coupled fluid-structure interaction problems. Ocean Engineering, 197, 106912.

[4] Hu, Z., Zhang, X.*, Li, Y., Li, X., Qin, H., 2020. Numerical study on hydroelastic interaction between solitary wave and submerged box. Ocean Engineering, 205, 107299.

[5] Yuan, X., Yao, Z., Qin, H.*, Mu, L., Jiang, H., 2020. Numerical study on the structural response of coastal bridge structures induced by tsunami wave forces based on CFD and FEM methods. ISOPE-2020, Shanghai, China. (师生合作)

[6] Qin, H., Mu, L.*, Tang, W., Hu, Z., 2019. Numerical study on structural response of anti-sloshing baffles of different configurations in a sloshing tank considering hydroelasticity. Ocean Engineering, 188, 106290.

[7] Qin, H., Mu, L.*, Tang, W., Hu, Z., 2019. Numerical study of the interaction between Peregrine breather based freak waves and twin-plate breakwater. Journal of Fluids and Structures, 87, 206-227.

[8] Zhao, E., Mu, L.*, Qin, H., Jiang, H., 2019. Study on dynamic slope angle of sandy seabed around the submarine piggyback pipeline in steady flow. Journal of Marine Engineering and Technology, 1-13.

[9] Qin, H.*, Mu, L., Zhao, E., 2019. Numerical study on the hydroelastic effects of the fluid-structure interaction in a sloshing tank with baffles. ISOPE-2019, Honolulu, Hawaii, USA.

[10] Qin, H., Tang, W.*, Xue, H., Hu, Z., Guo, J., 2017. Numerical study of wave impact on the deck-house caused by freak waves. Ocean Engineering, 133, 151-169.

[11] Qin, H., Tang, W.*, Hu, Z., Guo, J., 2017. Structural response of deck structures on the green water event caused by freak waves. Journal of Fluids and Structures, 68, 322-338.

[12] Qin, H., Tang, W.*, Xue, H., Hu, Z., 2017. Dynamic response of a horizontal plate dropping onto nonlinear freak waves using a fluid–structure interaction method. Journal of Fluids and Structures, 74, 291-305.

[13] Qin, H., Tang, W.*, Xue, H., Hu, Z., 2017. Numerical study of nonlinear freak wave impact underneath a fixed horizontal deck in 2-d space. Applied Ocean Research, 64, 155-168.

[14] Qin, H., Xue, H.*, Tang, W., Liu, J., Hu, Z., 2017. Numerical simulation of the dynamic response of a beam structure impacted by nonlinear freak wave. ISOPE-2017, San Francisco, California, USA.

[15] 秦浩, 唐文勇*, 薛鸿祥. 非线性畸形波所致的平台底部砰击载荷及结构响应数值模拟. 上海交通大学学报, 2018, 52(9): 1009-1016.

[16] 秦浩, 薛鸿祥*, 唐文勇, 扈喆. 考虑水弹性效应的非线性畸形波甲板上浪砰击研究. 第十八届中国海洋(岸)工程学术讨论会, 中国舟山.


发明专利

[1](美国)US12298390B2Method, Device, Computing Equipment, and Storage Medium for Predicting Drift Velocity

[2] ZL202410605954.9, 水上遇险目标的立体搜寻方法、 装置、 控制系统和介质;

[3] ZL202410605953.4, 水上遇险目标的漂移速度预测方法、 装置、 系统和介质;

[4] ZL202311055830.X,参数确定模型训练、参数确定方法、装置、设备及介质

[5] ZL202311417577.8,波浪消减方法、模型训练方法、装置、电子设备及介质

[6] ZL202510617670.6,波浪能转换控制方法、装置、设备和可读存储介质;

[7] ZL202310851198.3,路径规划方法、装置、设备及计算机可读存储介质;

[8] ZL202210520914.5,海况预测方法、装置、设备及存储介质;

[9] ZL202210861071.5,水上航行器航迹规划方法、装置、计算设备及存储介质;

[10] ZL202310815497.1,漂浮物的漂移预测方法、装置、设备和介质

[11] ZL202210495718.7漂移速度预测方法、装置、计算设备及存储介质;

[12] ZL202210495739.9风致漂移预测方法、装置、设备及存储介质;

[13] ZL202010810772.7一种海上溢油的三维模拟方法及装置;

[14] ZL202010709689.0一种海上搜救目标漂移预测方法及装置。


科研奖励

[1] 2023年,海洋工程科学技术奖特等奖,排名9/20

[2] 2023年,中国产学研合作创新成果奖一等奖,排名6/10

[3] 2023年,灾害防御科学技术奖一等奖,排名9/15

[4] 2019年,海洋科学技术奖一等奖,排名3/10

[5] 2019年,中国产学研合作创新成果奖一等奖,排名3/10

[6] 2017年,第十八届中国海洋(岸)工程学术讨论会青年优秀论文奖,排名1/4


学生指导

[1] 2025年,第十五届“挑战杯”大学生课外学术科技作品竞赛,湖北省一等奖(参赛学生:吴优王宇涵、马嘉祥等)

[2] 2024年,中国国际大学生创新大赛(2024),湖北省金奖、全国铜奖(参赛学生:马嘉祥、林梓田、王宇涵等)

[3] 2024年,第二届全国大学生职业规划大赛,校级金奖、优秀指导老师(参赛学生:王宇涵

[4] 2024年,第十四届全国大学生电子商务“创新、创意及创业”挑战赛,校级一等奖、优秀指导老师(参赛学生:马嘉祥、林梓田、王宇涵等)

[5] 2023年,中国国际大学生创新大赛(2023),湖北省金奖、全国铜奖(参赛学生:张彩云、王雅楠、刘绪鸿等)

[6] 2023年,中国国际大学生创新大赛(2023),校级银奖(参赛学生:马嘉祥、林梓田、王涵等)

[7] 2023年,第二届全国智慧海洋大数据应用创新大赛,全国20(参赛学生:马嘉祥、林梓田、谢雨菲等)

[8] 2022年,第八届中国国际互联网+大学生创新创业大赛湖北省金奖、全国铜奖(参赛学生:施皓程、周鑫祎、梁泽辉等)

[9] 2022年,亚太地区大学生数学建模竞赛二等奖(参赛学生:周鑫祎、陈浩生、夏凯);

[10] 2022年,第十九届五一数学建模竞赛一等奖(参赛学生:周鑫祎、王培军、周均花);

[11] 近三年指导研究生获得国家奖学金4人次梁弘健、苏浩文、魏伟、余立辰)、优秀硕士学位论文1人次梁弘健,优秀研究生、学业奖学金等若干。


研究生毕业去向(近三年)

[1] 元翔飞(就业):中国铁路设计集团有限公司;

[2] 王嘉乾(读博):中国海洋大学

[3] 张成哲就业国家海洋技术中心;

[4] 梁弘健读博西安交通大学;

[5] 魏伟就业江苏省自然资源厅;

[6] 余立辰就业:华为技术有限公司;

[7] 苏浩文读博南开大学